翻訳と辞書 |
Wallace–Bolyai–Gerwien theorem : ウィキペディア英語版 | Wallace–Bolyai–Gerwien theorem
In geometry, the Wallace–Bolyai–Gerwien theorem,〔(Proceedings of the American Mathematical Society - Vol. 94, No. 2, Jun., 1985 )〕 named after William Wallace, Farkas Bolyai and Paul Gerwien, is a theorem related to dissections of polygons. It answers the question when one polygon can be formed from another by cutting it into a finite number of pieces and recomposing these by translations and rotations. The Wallace-Bolyai-Gerwien theorem states that this can be done if and only if two polygons have the same area. == History == Farkas Bolyai first formulated the question. Gerwien proved the theorem in 1833, but in fact Wallace had proven the same result already in 1807. According to other sources, Bolyai and Gerwien had independently proved the theorem in 1833 and 1835, respectively.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Wallace–Bolyai–Gerwien theorem」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|